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ABSTRACT grounds for security and privacy threats [8, 29], using vulnera-

Smart home IoT devices are known to be breeding grounds for
security and privacy vulnerabilities. Although some IoT vendors
deploy updates, the update process is mostly opaque to researchers.
It is unclear what software components are on devices, whether
and when these components are updated, and how vulnerabilities
change alongside the updates. This opaqueness makes it difficult to
understand the security of software supply chains of IoT devices.

To understand the software update practices on IoT devices, we
leverage IoT Inspector’s dataset of network traffic from real-world
IoT devices. We analyze the User Agent strings from plain-text
HTTP connections. We focus on four software components in-
cluded in User Agents: cURL, Wget, OkHttp, and python-requests.
By keeping track of what kinds of devices have which of these com-
ponents at what versions, we find that many IoT devices potentially
used outdated and vulnerable versions of these components—based
on the User Agents—even though less vulnerable, more updated
versions were available; and that the rollout of updates tends to be
slow for some IoT devices.
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1 INTRODUCTION

Smart home technologies, also known as smart devices or Internet-
of-Things (IoT) devices, are gaining popularity, such as smart TVs,
speakers, cameras, and medical devices, yet they are breeding
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ble software components [3] and putting the users and other hosts
on the network at risk.

To mitigate these risks, like software, many IoT devices offer
updates that can be installed automatically or manually by users.
However, this update process remains largely opaque; it is unclear
what software components are on devices, whether/how any soft-
ware updates have occurred on these software components, and
how vulnerabilities change alongside the updates across a large
number, variety, and the long tail of IoT devices in smart homes [1].
This opaqueness makes it hard to keep track of the software bill-
of-materials (SBOMs) across devices over time and understand the
software supply chain of smart home IoT devices in general.

One of the reasons for this knowledge gap is the lack of scale in
many lab-based analyses of IoT devices. To understand the software
components on IoT devices and the update behaviors, researchers
often analyze the firmware binaries. However, commercial smart
home IoT devices tend to use proprietary and/or protected software
components (such as the firmware and libraries) that are difficult to
extract and reverse-engineer [33]. Furthermore, researchers often
need the physical IoT devices for their analyses. The number of
devices that can be studied is often constrained by time and budget;
one of the largest sample of IoT devices studied in the lab is about
120 devices [39, 42] and does not cover many devices in the long
tail [1]. As such, it is difficult for researchers to identify whether
and how IoT devices update to patch vulnerabilities over time.
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Figure 1: Software through vulnerability cycle. In this study,
we are focusing on the updates, step 4, 5 and 6.

Figure 1 shows software through vulnerability life cycle [47]: 1)
A software is released; 2) Security researchers find vulnerabilities;
3) Researchers ethically notify vendors about the vulnerabilities
privately and give a grace period of 90 days (current standard) to
fix those issues and release updates; 4) Vendor publicly discloses
the vulnerability along with updates containing fixes; 5) In the
ideal case, users download the updates and update the software
making it secure against the exploits; 6) In the worst case, users
don’t install the update and software stays vulnerable. Finally the
cycle continues starting from vulnerability research again after
both the 5th and 6th stage of the cycle.


https://doi.org/10.1145/3560835.3564551
https://doi.org/10.1145/3560835.3564551
https://doi.org/10.1145/3560835.3564551

SCORED ’22, November 11, 2022, Los Angeles, CA, USA

Objectives. Our goal is to understand software update practices
on IoT devices in real-world smart homes: what software compo-
nents and versions are present on devices at a particular time, as
well as when the versions and the associated vulnerabilities have
changed over time (i.e., likely updates). This knowledge will shed
light on the update practices across a large number and variety of
IoT devices and vendors, thus paving the way for deeper empirical
understanding of IoT software supply chain security.

Method. To achieve this goal, we conduct the first known longi-
tudinal analysis of IoT software components in real-world smart
homes and provide an initial understanding of update practices
in the IoT ecosystem. In particular, we leverage IoT Inspector’s
dataset of network traffic crowdsourced from smart homes around
the world [23]. The dataset includes the likely identities of devices,
along with any User-Agent strings extracted from plain-text HTTP
headers sent by these devices. The User Agents indicate potential
use of certain software components and their versions. We would
like to note that devices from our dataset do not use plain HTTP for
the majority of communication, but they do send them out for some
reason with empty payload, possibly to test a connection or discov-
ery purposes (based on our lab studies). We have not decrypted the
HTTPS connections while collecting data for this study.

In this paper, we analyze the versions of four different software
components that appear in the User Agent strings: cURL (which
is both a library, 1ibcurl, and a binary), Wget (a binary), OkHttp
library, and Requests (Python’s) library. We observe these compo-
nents in the User Agent strings on 23,837 devices (including 359
what looks like IoT devices) across 4,562 real-world smart homes
between Apr 2019 and Oct 2021.

Findings. We show that update practices in the IoT ecosystem
are different from (sometimes worse than) findings from general
purpose computing devices. In particular, none of the IoT devices
in our dataset included the latest versions of the four software
components in the User Agent, even when the latest versions were
available at the time IoT Inspector captured the data. In some cases,
the lower versions included critical CVEs that could have been
fixed if the IoT devices had been using the latest versions at the
time. Furthermore, we find that vendor deploy updates in rolling
fashion, and oftentimes rolled out updates are not the latest. In
other words, when vendors deploy updates, they do not always
update the software component to the latest versions, which means
oftentimes devices are left in vulnerable state even after end user
install the update.

These findings paint a grim picture of the slow (and sometimes
the lack of) software update practices on certain IoT devices. Such
update practices could be a result of users not promptly installing
updates, IoT vendors not deploying updates in time, or both—it is an
open question what is the cause for our observation. It is our hope
that this study will offer the first evidence on the update practices
on IoT devices, highlight the associated software supply chain risks,
and provide the impetus for more secure practices on users, IoT
vendors, and regulators.

2 RELATED WORK

Software updates. In the last couple of decades, there has been a
push from academia and industry to improve the software update
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hygiene for all kinds of software because old software has been
correlated with compromise [12, 27], so it is in the best interest
of everyone’s security and from economical standpoint to use the
latest version of software [9, 14, 16, 34, 46]. Propelled by this push,
major software vendors have adopted the practice of deploying
frequent updates, which improved the vendor update deployment
practice. On the other hand, end users are advised to follow “Best
Practices”, which includes updating software as soon as updates
are available if users can [12, 27, 46]. For software like operating
systems (OS) and applications running on them, previous studies
have shown that user update installation practice can be modeled
with either geometric or exponential distribution, which means
majority of the users update the software after new release, but rest
of them take longer duration [26, 40, 44, 46].

Updating software is considered to be a part of “Best Practices” to
increase security by shrinking the vulnerable state of hosts, [16, 41]
recommend updates. Khan et al. [27] found a positive correlation
between infection indicators and a lack of regular updating prac-
tice, [12] showed correlation in devices not updating and being
compromised at some point of time. Sarabi et al.[46] found that
frequent discovery of vulnerabilities in a software limits the ben-
efit of providing faster updates. DeKoven et al. [16] measure the
correlation between “Best Practices” and impact on security risk.

Four factors for update. One way to define security of a host
is how vulnerable it is; the less vulnerability a host has, the more
secure it likely is. From the software update perspective, there
are four factors that decide the vulnerable state of a host: 1) how
quickly users install the updates; 2) how quickly vendors deploy
the patch; 3) how vendors deploy the patch; and 4) how frequently
vulnerabilities are found [46]. These combined together tell about
update practice. So far studies have looked at all the four factors
for software that are used for computing in general (i.e. mobiles,
computers, tablets, etc.) [6, 7, 9, 10, 13, 14, 18, 35, 36, 40, 44-47, 49].

There have been studies about all the factors affecting the vulner-
ability state of a host. These studies have been conducted for both
clients side (general purpose computing devices) and server side
hosts. For general purpose computing devices, there is [16, 46] on
user update behaviors using various software; [6, 7, 9, 10, 14, 35, 36,
45, 47] on vendor update deployment and vulnerability disclosure;
[17, 20, 21] on mechanism of deploying patches where they suggest
silent updates are the most effective. On servers side hosts update
behaviors there are [18, 26, 40, 44, 49], where they measure patch
installation delays after major security incidents and routine patch
releases after vulnerability disclosures.

Update practice for IoT. Specific to IoT devices, Yousefnezhad et
al.[51] has done a comprehensive survey of IoT product lifecycle,
including vulnerability management and software updates. There
have been numerous study about IoT update infrastructure, i.e.,
how to deliver updates to IoT devices logistically [28, 30, 50, 52],
and securely [11]. It has also been found that user awareness about
updating devices has improved — IoT device users prefer to buy
products that guarantees updates [34].

So far we are not aware of any study about the current update
practice in IoT ecosystem. The case for IoT devices is different from
major software vendors because of the sheer amount of devices and
vendors available in the market [1]. Another possible reason for
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the differentiation could be that vendor nudges to update software
could not reach IoT device users, unlike computing devices if users
are actively using devices they see the update nudge on UL Because
some IoT devices can only be interacted with companion apps,
and users might forget to use the apps as these devices might be
always on without user interaction. Also, unlike few major software
vendors for personal computing, IoT vendors are fragmented and
too many [1]. All this makes it difficult to apply the results of
previous studies to the IoT ecosystem.

3 METHOD
3.1 Inferring software components from User
Agents

To understand software update practices on real-world IoT devices,
we use IoT Inspector’s [23] dataset of network traffic, crowdsourced
from global smart homes. The dataset includes names and manufac-
turers of devices, along with various network header data, including
the User Agent strings extracted from plain-text HT TP connections.
Note that IoT Inspector does not capture the contents of the HTTP
traffic; nor does it collect personally identifiable information [23].
We look at a subset of this data, which consists of 4,562 different
smart homes containing 23,837 unique devices (including IoT and
general purpose computing) from Apr 9, 2019 to Oct 12, 2021.

The captured User Agent strings offer indications for software
components that devices have likely used. We focus on four soft-
ware components used as User Agents: cURL [15], Wget [48], Python
Requests [43], and OkHttp [38]. We picked these because they are
the most popular (by the number of devices) User Agents that
are not browsers. This information is by no means the ground
truth for what software components devices actually used (since
HTTP clients can, in theory, put anything into the User Agent field).
Still, we assume that devices’ HTTP clients are honest about being
non-browsers. There is evidence for non-truthful User Agents for
browsers [2], but we are unaware of any evidence of non-truthful
User Agents for non-browsers like cURL, Wget, Requests, and
OkHttp. As such, throughout this paper, we use the User Agent as
a proxy for the actual software components.

IoT Inspector captures the HTTP User-Agent header seen in the
network traffic from uniquely identified devices with a timestamp
of when it was seen. Devices whose traffic is captured could include
general purpose computing devices (computers, phones, etc.) and
IoT devices. We distinguish the device categories with the Finger-
bank [19] APIs (which identify devices based on the MAC address
and destination hosts contacted over a proprietary ML model).

To find out how old and vulnerable versions of these four soft-
ware are used, we manually compile a list of versions released with
dates from their websites or code bases. Each version is assigned
a release number from 0 (first release) to N (last release). We also
compile a table of vulnerabilities each version of these four software
have. Vulnerabilities in each version are either available on their
website or we compile it by searching names of each software on
the National Vulnerability Database (NVD) [37] and use the CVE
number and Common Platform Enumeration (CPE) to map them
to different versions.
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3.2 Metrics for understanding update practices

To get the understanding of update practices, from the collected data
where HTTP user agent is one of the four software, and compilation
of four software version release dates and vulnerability each version
have, we curate statistical metrics for all the unique device and user
agents combination. This includes following:
e What software is used as user agent and its used version
o First and last seen timestamp in the IoT Inspector dataset
e At the last seen time, the latest available version of that
software
o At the last seen time, the number of versions and days (or
months) behind this used user agent version is from this
latest available version at this time
e At the last seen time, the number of vulnerabilities that could
have been avoided by using the latest version. We explain
how this is calculated later in the next subsection 3.3.
For our analysis to gain perspective of update practices we rely on
three metrics retroactively:
(1) number of avoidable vulnerabilities, having vulnerabilities
directly contribute to the vulnerable state of a host adversely
(2) number of versions behind
(3) and number of days behind (directly correlated with number
of versions behind), they both show how quickly hosts are
updated which involves both user promptness in installing
updates and vendors deploying updates.
From our dataset we can’t distinguish if users are not installing
updates quickly or vendors are deploying updates slowly, but we
can tell about the update practices comprising both with these three
metrics.

3.3 How these metrics are calculated

Versions behind for a user agent when it’s seen in our data is calcu-
lated by subtracting the release number of the used version from
release number of most recent available version at this seen time.
To calculate the number of avoidable vulnerabilities, we take the
difference between the set of all the vulnerabilities in the used ver-
sion and the set of vulnerabilities in the most recent version, which
tells us vulnerabilities that were in the used version but not in the
latest version, i.e., they were fixed in the latest version. Let’s say,
X be the set of vulnerabilities in the used version and Y be the set
of vulnerabilities in the latest available version. Number of avoid-
able vulnerabilities would be (X - Y), whereas this - (subtraction)
represents the difference of set operation.

For example, let’s suppose cURL version 7.20.0, which is release
# 112, released on 2010-02-09, and has 10 vulnerabilities as of today.
Let’s also suppose we see a device with the user agent cURL 7.20.0
on 2020-02-09 in the dataset. Latest available version of cURL on
2020-02-09 is version 7.68.0, which is release # 187, released on 2020-
01-08, and has 8 vulnerabilities as of today. The number of versions
behind for this seen version is 75 and the number of days behind
is 3620 (9 years and 11 months). For the sake of this example, let’s
assume 8 of the vulnerabilities in 7.20.0 are not present in 7.68.0 and
2 of them were still present on 2020-02-09, which also means 7.68.0
has 6 new vulnerabilities introduced in it but at some point after
its release maybe even after the date 2020-02-09. So, the number
of vulnerabilities that could have been avoided by using 7.68.0 on
2020-02-09 is 8 because they are fixed in this version.
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Figure 2: Number of avoidable vulnerabilities in cURL against number of versions behind, and CDF distribution of devices for

number of versions behind.

4 FINDINGS

4.1 Outdated software components introduce
avoidable vulnerabilities

Focusing on three factors of update practice, excluding the way
vendors deploy patches, our finding for all kinds of client hosts
(including general purpose computing and IoT devices) is consistent
with previous studies. Nappa et al. [35] finds that devices move on
to the latest version slowly showing a long tail, and Sarabi et al. [46]
models how long they stay vulnerable (if they don’t update) using
geometric distribution which also shows long tail. Our findings
using the three metrics in the graph Figure 2 and A.1 (Figure 5) for
the four software over our capture duration suggest a similar trend,
which tells us that our data is valid and devices are not lying about
the user agents seen in our data.

In Figure 2, cURL is used as a user agent. On the horizontal axis
we have a number of versions behind for different versions of user
agents seen at different times during our data collection. The text
label above the CDF for the version is the mean number of months
older version is from the latest version available at the time of usage,
for example, when a used version is 80 release versions behind, from
the latest version it’s on average 140 months (approximately 12
years) old. On the vertical axis on left, we have the distribution
of the number of vulnerabilities that could have been avoided for
every version behind, for e.g., when version behind is 25, number
of avoidable vulnerabilities are in the range 21-35 (median 28) for
critical and high severity vulnerabilities, and 24-39 (median 31.5)
for vulnerabilities of all severities. On the vertical axis on right,
we have a CDF plotted for the number of versions behind for 621
unique devices and cURL combinations. As per our data for cURL,
there is a 50% chance that when cURL is used as a user agent it’s at
least 14 release versions behind, 14 months old, and it could have
avoided a median of 11 vulnerabilities by using the latest available
version of that time. For cURL, at the long end of the tail we see 3
devices using more than 90 release (~12 years) old versions.

Plot for all the versions shows a similar long tail of older release
version usage for all four software; see Figures 2, and A.1 (Figure 5).
The number of avoidable vulnerabilities is different and depends
upon how many vulnerabilities a software component has. OkHtttp
and Python Requests don’t have many vulnerabilities, so updating
to the latest version affects the vulnerability state to a lesser degree.
From the plot of cURL and Wget, we can say that outdated versions
over a period of time accrue more vulnerabilities and expand the
host’s vulnerability state. The previous statement is not true if
a software doesn’t have vulnerabilities, evident from the plot of
Python Requests, and OkHttp.

We see surprising downtrend in number of avoidable vulnerabil-
ities after number of version behind is more than 50 for cURL. cURL
releases new version every 49 (median) days. So 50 and 90 version
behind cURL is approximately 7 to 12 years old. Presumably the
reason for the downtrend could be that cURL had less features 7
years ago, as its code base grew number of vulnerabilities increased.

4.2 Update practices of IoT devices are different
from general computing devices

To find the distinction in update practice (including vendor deploy-
ment and user installation) of IoT devices versus non-IoT devices
we categorize devices in six categories as per Fingerbank’s [19]
APIs. These six categories are: "IoT platforms”, "IoT non-platforms”
, "Computing", "Storage and Printers", "Networking", and "Others";
see Table 1.

We distinguish between "IoT platforms" and "IoT non-platforms".
If an IoT device allows third-party applications to be installed on
them, we call them "IoT Platform". We distinguish "IoT platforms"
from "IoT non-platforms" because applications installed on them
could be affecting the version of user agents captured from those
devices. "Computing” category includes general purpose computing
devices. "Storage and Printers" category contains network storage
devices (NAS) and printers. "Networking" category contains net-
working devices found in homes. Rest of the devices that can’t be
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Table 1: Device types in our 6 device categories based on
Fingerbank APL

Category Device types

IoT platforms smart TVs, set top boxes (STB), and digital
video recorders (DVR)

rest of the IoT devices, such as smart cam-
eras, smart assistants, speakers, smart vac-
uum cleaners

computers, phones, tablets, and Raspberry
Pi kind of devices

network storage devices (NAS), and printer

IoT non-platforms

Computing

Storage and Printers

Networking routers, wireless access points (WAP),
switches, and firewalls
Other rest of the devices that can’t be categorized

by Fingerbank

classified by Fingerbank API are in Other category. Example of few
vendors seen in our data are in Table 2.

Table 2: Examples of few vendors we have seen for four soft-
ware in our data.

Software Few example vendors

component

cURL Samsung SmartThings, Google Nest, Parrot IoT,
Vizio TV, WD TV Live, Meraki WAP, Synology
NAS, Roomba, etc.

OkHttp Amazon Alexa and Fire TV, Google Chromecast

and Home, Roomba, Vizio TV, NVidia Shield,
Belkin Router, etc.

Wget WD TV Live, Netgear, Synology NAS, QNAP NAS,
Amazon Alexa, Tablo DVR, etc.

Python Re- Eero WAP, Cisco WAP, Synology NAS, TP-Link,

quests NVidia Shield, Telldus Smart home, etc.

We box plot the distribution of vulnerabilities avoided (affects
the vulnerability state of a device), number of versions behind,
and number of days behind for each user agent seen in the earlier
mentioned six categories for all the four software in Figures 3, and
Appendix A.2. We would like to note that for OkHttp, Figure 4
shows that older versions (60 months old) and newer versions (20
- 25 months old) are equally vulnerable. This is because OkHttp
has only two vulnerabilities and they exist in versions from 2017,
and 2019. So either used versions of OKHTTP are five years old
(after 2014), or two years old (after 2017) — they both contain two
vulnerabilities and are equally vulnerable.

4.2.1 Comparing "Computing" group with loT devices. From Figures
3, and Appendix A.2 (Figure 6), we could see that each category
has a different distribution than others. By looking at the mean and
median number of avoidable vulnerabilities, we can clearly see that
personal computing devices have better software update posture
than both the IoT device categories for all the four software, except
for cURL in "IoT non-platforms" category. We looked further into
this case, and found that there are 105 unique Samsung SmartThings
[25] devices present in our dataset out of 163 devices in the "[oT non-
platforms" category. These SmartThings devices consistently use
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the same cURL version 7.60.0, and are seen in a small burst of time.
At the time when they are seen they are only 6 versions behind from
the latest available version of cURL. These devices single-handedly
improve the update posture of "IoT non-platforms" devices seen in
our data by reducing the mean and median number of avoidable
vulnerabilities in this category. Focusing on the update practice of
SmartThings over our data collection duration, we find their update
practice is not good — they have two kinds of devices and both of
them use the same version of cURL for more than 20 months. We
conclude that these devices might have released an update at the
time when we started data collection, and their presence in large
numbers skewed the results for "[oT non-platforms" category. If
we exclude SmartThings devices, in the case of cURL, computing
devices’ update practice is better than "IoT non-platforms" and
"[oT platforms" combined together. See mean and median values of
number of avoidable vulnerabilities with and without SmartThings
devices for these categories for cURL in Table 3.

Table 3: Number of avoidable vulnerabilities in "Computing",
"IoT platforms", and "IoT non-platforms" groups of cURL.

Group mean median
Computing 15.54 16.0

IoT platforms 30.66 34.0

IoT non-platforms 10.22 8.0

10T non-platforms without Sam- 15.18 13.5
sung SmartThings

Both IoT groups together 16.83 8.0

Both groups together without 24.76 28.0
Samsung SmartThings

4.2.2  Comparing "loT platforms" group with "loT non-platforms".
Focusing on IoT devices only, both the categories perform similarly
in terms of updates practice if we take a look at the mean and median
values of avoidable vulnerabilities for two IoT categories for all four
software in the Appendix B (Table 5), except for cURL for the reason
explained in previous subsection. "IoT non-platforms" are doing
better in general, which could be probably because large amount
of third-party applications on platforms don’t have as consistent
update practice as a single vendor IoT devices.

Takeaway: As previous studies have only focused on general pur-
pose computing devices, we find that update practice of IoT devices
are worse than computing devices.

4.3 Possible slow vendor deployment and end
user installation in IoT devices

In general purpose computing, prior work [17] has suggested that
silent updates lead to quicker update installation compared to non-
silent updates, and vendor update deployments depend upon vul-
nerability disclosure [35]. For the software we used in our study,
vulnerability disclosure factor for update practices is the same for
all categories of devices, but the IoT group is using older versions
for longer duration. That means the remaining three factors — user
promptness, vendor deployment, and mechanism of deployment —
are contributing to the reason why update practice of IoT devices
is worse than general purpose computing devices. As these soft-
ware are unlikely to be directly used by end users on IoT devices,
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Figure 3: Distribution of number of avoidable vulnerabilities, number of versions behind, and number of months behind for all

categories of IoT devices using cURL (top), and OkHttp (bottom).

updates for them typically go through the IoT vendors. Regarding
vendor deployment factor in update, there has been an argument
that vendors are bad for security, because they add an additional
pit stop for the patches getting to end users [31, 32]. So maybe
vendors are deploying patches slower than the computing group.
User promptness to install patches is affected by update mechanism
deployed by the vendors. The majority of well performing software
component used on devices in computing groups have now adopted
the silent update strategy [17]. Maybe IoT vendors are deploying
patches promptly but not using silent update mechanisms, presum-
ably for reasons like, not being able to do silent updates as IoT
devices have constraints on computational power. In contrast with
computing groups, some IoT devices are always on and don’t need
user engagement after the setup. To update IoT devices users have
to use the companion apps, it could also be possible that users set
up the IoT device and forget to check the companion app, which
could be another reason for users’ not promptly installing updates.
A future work would be finding data relevant to all these factors
to help us understand the actual reason behind sluggishness in IoT
group update practices.

4.4 10T vendors not deploying latest versions

To understand the vendor deployment factor of update practice we
plotted versions of four software used by user agent of different
devices from different vendors over the duration of our data capture.
We only used devices from "IoT non-platforms" for these plots
because "IoT platforms" allow third party apps. Versions seen from
"ToT platforms" category devices will not depict a single vendor’s
deployment practice. For both the vertical subplots in the Figure 4,

and A.3 (Figure 7) on the vertical axis we have different versions
of software used, and time on the horizontal axis. All software is
used by user agent of different vendors so we manually picked
vendors which were seen more frequently in our data. Different
colors of distribution represent different vendors as mentioned on
the legends on the bottom right corner of every figure. The latest
available version with respect to time is plotted in green color to
give an understanding how far behind these used versions are from
latest version. Plots also mention the metrics number of avoidable
vulnerabilities and number of versions behind, described in section
3.3, in square brackets next to plotted distributions.

From these previous plots we can see the trend that user agents
of different devices of the same vendors are using the same version
over a period of time. We also see that some devices from a vendor
have updated to a newer version while some of them are still us-
ing older versions. This could possibly be explained by either IoT
vendors are deploying updates in a rolling fashion or users are not
installing the updates after the vendor deploy the updates. We do
see a jump in versions after a period, which is shown on the right
side subplot. We explain the right side plot in the next subsection.
4.5 Time to repair (TTR)

We also try to calculate time to repair per version in terms of days
for each software by calculating the number of days between two
subsequent versions seen in our data and divide it by the number
of release versions differences between them. A TTR is the slope
between two points of the same vendor on the right side subplot.

Right subplots in Figure 4 only include points when time and
version both were seen in increasing order only. To elaborate, let’s
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Figure 4: For different vendors using cURL (top), and Wget (bottom), distribution of versions used against time in left subplot;
version seen in incremental order with respect to time, along with number of avoidable vulnerabilities and number of version
behind in square brackets in right subplot. Both the subplots show latest available version at the time of version usage.

suppose that in April 2019, we see Alexa [24] devices using version
2.4.0 of OkHttp on dates 1st, 10th, and 15. Again in 2019, we see
older version 2.3.0 in May, a newer version 3.5.0 in July on dates 1st
and 15th, and another newer version 2.5 on July 20th being used
by Alexa devices. We include 2.4.0 used on 1st April and 3.5.0 used
on 1st July in the right subplot because this is the first time we
have seen these versions. Clearly suggesting that the vendor has
deployed a patch as per our data. We don’t include 2.3.0, used in
May because the device has not been updated to a newer version,
as we have seen newer versions from Alexa devices before on 1st
April. We don’t include 2.5.0 used on July 20th even though it’s an
increment in version from 2.4.0 because it might have been rolled
out by the vendor earlier, sometime between 1st April and 1st July,
it’s just not present in our data, as we see 3.5.0 being used before
on July 1st.

Using this methodology we attempt to calculate the TTR per
version of each vendor and report it in the Table 4. As our dataset is
small, we have only few points in the right subplot in Figures 4. So
TTRs we have calculated are few in terms of numbers. In the Table
4, the first small TTR for each version is because vendors probably
rolled out the updates shortly after we started the capture, but the
second ones are probably closer to actual TTR for the respective
vendor. From this data we can say TTR for different vendors for
the same software are different, consistent with [35].

Takeaways from our findings:

e ToT vendors are slower at deploying updates than all four soft-
ware components, which could leave end users vulnerable if
software has patched vulnerabilities in deployed updates.

e Even when IoT vendors do deploy updates they don’t update
to the latest version.



SCORED ’22, November 11, 2022, Los Angeles, CA, USA

Table 4: Calculated TTR per version
hours:minutes:seconds for few vendors.

in days,

software vendor TTR per version
cURL Cisco Meraki 1 days, 9:44:01
Cisco Meraki 104 days, 0:30:41
Parrot 0 days, 12:26:02
Parrot 57 days, 20:46:07
Ruckus WAP 2 days, 13:43:00
Python requests eero WAP 0 days, 22:45:37
eero WAP 320 days, 13:54:33
OkHttp Alexa 0 days, 1:39:02
Alexa 3 days, 16:50:06
Alexa 6 days, 12:20:04
Alexa 80 days, 9:25:09

TP-Link Tech 63 days, 6:40:32

e In case of cURL, the updated version could have avoided
vulnerabilities by updating to the latest version available.

5 DISCUSSIONS AND FUTURE WORK

Despite the small number of software components studied, our anal-
ysis paves the way for future studies. Hopefully our preliminary
findings are enough to point out to the research community that
more effort is needed to gain understanding of update practice in
the IoT ecosystem. We are planning to collect more data in future so
that we can get more consistent, statistically large, and informative
results, including (i) more device identification information (as we
currently rely on FingerBank’s API, which uses a blackbox machine
learning model with unclear accuracy); and (ii) more evidence of
software components beyond user agents (e.g., fingerprinting net-
work traffic with p0f to infer the operating system [4], or with TLS
ClientHello to infer the SSL library and versions [3]).

Three factors out of four that are collectively responsible for
update practice: user promptness, vendor update deployment, and
mechanism of update deployment, we couldn’t tell exactly which
ones are contributing to worse update practice in IoT devices, com-
pared to general purpose computing devices. Future studies could
try to figure this out—for example, by asking IoT Inspector users
about their actual update behaviors, thus collecting human-centered
data alongside the User Agent data—so that efforts could be directed
in the right direction to improve IoT ecosystem update practice.

We recommend IoT device users to install updates promptly
upon notification. There are some IoT devices that don’t require
user interaction after installation, users should mindfully check
for updates for these kinds of devices and install them promptly
when available. We recommend vendors to use the latest versions
of software components, even in cases when a component has few
vulnerabilities (for e.g. OkHttp) because with one critical vulnerabil-
ity attackers could do as much of damage as a software component
having multiple critical vulnerabilities. We would also recommend
vendors to keep SBOMs and track updates provided by software
components they use. Learning from Linux vendors [31, 32, 49] ,
when software components provide updates, vendors should deploy
those updates as soon as possible instead of acting as gatekeeper
and blocking them because there is no other way for IoT device
users to update those components. Vendors should deploy updates

Vijay Prakash, Sicheng Xie, and Danny Yuxing Huang

on IoT devices securely using standards like [5, 22], and silently (if
possible) as previous studies have pointed out it’s the most effective
way [17, 20, 21].

6 SUMMARY

We conduct a preliminary study of update practice of IoT devices
and find that it’s different from the findings of studies conducted
about update practices of general purpose computing devices. We
find that IoT devices are slower to update to newer versions com-
pared to general purpose computing devices. We couldn’t find the
exact reason behind this but we narrowed down our findings to
where future research should direct their efforts in order to find
out which of three factors, end user promptness to install updates,
vendor deployment practice, and vendor deployment mechanism
are responsible. We also find that when IoT vendors deploy updates
they don’t update to the latest version, leaving hosts vulnerable to
publicly known vulnerabilities.
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Figures in the Appendix A.1 shows the plots for avoidable vulnera-
bilities vs versions behind for Wget, OkHttp, and Python Requests
in Figure 5. The number of avoidable vulnerabilities and CDF of
Wget, OkHttp, and Python request shows similar trend to Curl, see
Figure 2. The shape of OkHttp and Requests appear to be different
because they have fewer vulnerabilities, and that results in zoomed
in Y axis; possibly because OkHttp and Requests are written in
memory safe languages Java, and Python respectively. Otherwise,
OkHttp and Requests also show a long tail distribution. To list the
software components in order form most vulnerable to secure, we
could look at number of avoidable vulnerabilities in those com-
ponents, and from that Curl seems most vulnerable, then Wget,
Python Requests, and finally OkHttp.

By looking at the plots of Python Requests and OkHttp, one
could make an argument that if software component has less vul-
nerabilities, using newer versions doesn’t result in improved the
security, but those few vulnerabilities in older version could be
exploited by attackers and do as much damage as having large
number of vulnerabilities. Unless a software has no vulnerabilities,
it’s always beneficial to use the latest version.

A.2 Distribution of avoidable vulnerabilities,
versions behind, and months behind

Figures in the A.2 shows the distribution of distribution of num-
ber of avoidable vulnerabilities, number of versions behind, and
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Figure 5: Number of avoidable vulnerabilities in Wget, OkHttp, and Python Requests, from top to bottom, against number of
versions behind, and CDF distribution of devices for number of versions behind.
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categories of IoT devices using Wget (top), and Python Requests (bottom).
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Table 5: Table of mean, and median (in parenthesis) for each categories of IoT devices’ distribution of number of avoidable
vulnerabilities, number of versions behind, and number of months behind for all software.

prog  metric IoT platforms IoT non- Storage & Networking Computing Others
platforms Printers

CURL  avoidable hi+ vulnerabilities  30.67 (34.00) 10.22 (8.00) 21.83(16.00)  21.05 (18.00) 15.54 (16.00) 14.31 (8.00)
versions behind 40.71 (30.00) 10.58 (6.00) 21.67 (15.00) 36.60 (21.00) 17.23 (15.00) 16.60 (6.00)
months behind 61.35 (40.10) 17.09 (10.50) 31.50 (23.57) 57.34 (31.20) 25.50 (23.57) 25.45 (10.50)

Wget  avoidable hi+ vulnerabilities 7.0 (7.00) 4.60 (7.00) 5.18 (6.00) 7.00 (7.00) 4.44 (4.00) 4.55 (6.00)
versions behind 18.40 (17.00) 12.40 (18.00) 12.53 (12.00) 25.00 (25.50) 11.47 (10.00) 13.00 (16.00)
months behind 73.93 (63.40) 57.75 (79.70) 44.03 (41.23) 119.69 (123.55)  40.64 (34.33) 55.47 (54.03)

OkHttp avoidable vulnerabilities 0.82 (1.00) 0.65 (1.00) NaN 0.38 (0.00) 0.63 (1.00) 0.75 (1.00)
versions behind 25.09 (25.00) 27.38 (28.00) NaN 22.50 (17.50) 19.82 (19.00) 18.32 (16.00)
months behind 32.87 (38.60) 34.24 (32.67) NaN 15.11 (9.97) 20.04 (17.25) 23.26 (19.47)

Requests avoidable vulnerabilities 0.50 (0.50) 0.75 (1.00) 0.67 (1.00) 1.95 (2.00) 0.18 (0.00) 0.22 (0.00)
versions behind 16.00 (16.00) 21.42 (27.50) 15.33 (5.00) 45.13 (46.00) 4.58 (0.00) 6.72 (1.00)
months behind 24.17 (24.17) 30.63 (37.47) 21.72 (16.07) 48.15 (48.27) 7.61 (0.00) 9.76 (1.42)

number of month behind for different categories for Wget, and
Python Requests in Figure 6. From both the plots we can see that
distribution for different categories are different. Looking at the
mean and median, update practices of computing group is better
than both IoT non-platforms and IoT platforms.

A.3 Versions of software components used by
vendors
Figures in the appendix A.3 depicts the version of Python Requests

used by vendor eero Wap. Similar to Figure 4 for cURL and OkHttp,
we see that vendor has rolled out an updates to versions 2.21.0 and

2.23.0 and these updates are 1 and 3 versions behind from latest
available at that time respectively. We have not included the plots
for Wget because we did not see any vendor updating Wget in our
data. Plot of Python Requests in Figure 7

B STATISTICAL VALUES OF METRICS FOR
ALL SOFTWARE COMPONENTS

Table 5 lists the mean and median values of metrics used by us.
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